Review for Final

Unit 1: Algebra Foundations

The Real Number System		
THE REAL NUMBERS		
IRRATIONAL NUMBERS (I):	RATIONAL NUMBERS	(b): 3/2, 0.6-4.5
Crazu	INTEGERS (<u>Z):3,-2,-1,0,1,2,3</u> .
crazy Numbers.		J ₁ : 0, 1, 2, 3
1001110- 3 1	NATURAL NUMBERS (N ₁ : 1, 2, 3, 4,
Name all sets to which each number	C)	_
$1.\frac{2}{3}$ \mathbb{R}	2. 13 P, O, Z, W, N	3. 0 R, Q, Z, W
4√50 R I	528 ROZ	6. T
	- 4	

Properties COMMUTATIVE: ORDER!! G+b=b+a Cb=ba	ASSOCIATIVE: $(a+b)+c=a+(b+c)$ $(ab)c=a(bc)$
DENTITY: - Q+ 0 = Q - Q · 1 = Q	INVERSE: $C + C - C - C - C - C - C - C - C - C - $
ZERO PRODUCT: $(X^2+1) \cdot O = O$	DISTRIBUTIVE: - $a(b+c)=ab+ac$ - $7(x-3)=7x+21$
REFLEXIVE: $\frac{Q = Q}{17y = 17y}$	1 = b, then b=a 1 = 2x = 15, then 15=3x

TRANSITIVE:

- If a=b and b=C, then a=c
- · If 7=149 and 149=6+1, then 7=6+1

Identify the following properties:

- 1. 5x+1=1+5x Commutative 5. If $2^5=32$ and 32=8.4, then $2^5=8.4$ Transitive

- 2. 17 = 17 Reflexive 6. 8k + 0 = 8k | denity 3. $10y^2 \cdot 0 = 0$ Product 7. If -2x = 20, then 20 = -2x = 9 Mmchic 4. -3(x+8) = -3x 24 Distributive 8. $\frac{4}{9} \cdot \frac{9}{4} = 1$ Inverse

CLOSURE: Answer yes or no. If no, give a counterexample.

- Are natural numbers closed under subtraction?
- Are integers closed under addition?
- Are irrational numbers closed under division? _____ = ___
- Are whole numbers closed under multiplication?

Square Roofs & cube	Roofs 2. √144 12	3. √64 <i>S</i>	4. \(\frac{16}{49} \) \(\frac{116}{149} \) \(\frac{7}{149} \)
5. 1/27 3·3·3 9·3	6. ³ √216 6 6. 6. 6 36. 6 216	7. ₹8 2·2·2 4·2	8. ₹1000

Exponent Rules	11		
PRODUCT RULE	POWER RULE	QUOTIENT RULE	NEGATIVE EVECNENT DUILE
$x_a \cdot x_p = X_{a+p}$	$(x^a)^b = \chi^b$	$\frac{x^a}{x^b} = X$	$\mathbf{x}^{-\mathbf{a}} = \frac{1}{\mathbf{X}^{\mathbf{A}}}$
1. v ⁴ · 7v ³ · 5v	2. $(3x^2y^2)^3$		3. (-2a ⁶ bc ³) ² ·-5ab ²
35 v 8	27x	y 6	-20a ¹³ b ⁴ c ⁶
4. $(-2y^4) \cdot (xy^3)^2 - 13x^2y^{10}$	5. $\frac{a^6b^7c^2}{a^5b^4c^2}$		6. $\frac{(-3x^6)^2}{5x^3 \cdot 3x^3} = \frac{9x^7}{15x^6}$
-15x ² y10	ab	3	3x 5

$$7. \left(\frac{4x^4y^2}{6xy} \right)^2 = \frac{4x^4y^2}{6xy}. \frac{4x^4y^2}{6xy} = \frac{16x^8y^4}{36x^2y^2} = \frac{4x^6y^2}{9}$$

$$8. \frac{-9n^8}{27n^{10}} = -\frac{1}{3}(n^3) = -\frac{1}{3}(n^3)$$

9.
$$\frac{a^{12}b^{-3}}{(ab)^{-4}} = \frac{\alpha^{12}b^{-3}}{\alpha^{-4}b^{-4}} = \frac{\alpha^{12}b^{-4}}{\alpha^{-4}b^{-4}} = \frac{\alpha^{12}b^{-4}}{\alpha^{-4}b^{-4}$$

Unit 2: Expressions

Evaluating Expressions (Numerical & Algebraic)

1.
$$2^3 \cdot (9-2) + \frac{12}{4} - |-5|$$

$$2^3 \cdot 7 + \frac{12}{4} - 5$$

2.
$$8 - [12 \div (\sqrt{49} - 1)] + 1$$

3.
$$\frac{5^3 - 42 \div 6}{\sqrt[3]{8}}$$

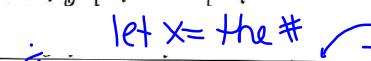
4.
$$w^2 - 5xy$$

if
$$x = -3$$
, $w = -2$ and $y = 1$

$$(-2)^2 - 5(-3)(1)$$
 $4 + 15(1)$
 $4 + 15$

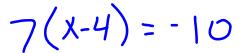
5.
$$\frac{7c^2+5}{4a-b}$$

if
$$a = 1$$
, $b = -5$ and $c = -4$


$$\frac{7(-4)^{2}+5}{4(1)-(-5)} \rightarrow 7(16)+5 \Rightarrow 117$$

6.
$$2|y| - x^2$$

if
$$x = 6$$
 and $y = -3$


$$2/-3/-(6)^2$$

Translating Equations & Inequalities

1. The quotient of twice a number and 7 is 20.

3. Seven times the difference of x and 4 s -10.

2. Five less than the product of a number and 3 14.

4. The product of a <u>number and fo</u>ur increased by one is at least 7.

$$\frac{1}{4}$$
X+1 ≥ 7

Unit 3: Equations

Equations

1.
$$18 = 3 - 3a$$
 $-3 - 3$
 $15 = -3a$
 $-3 - 3$
 $-5 = 0$
 $0 = -5$

3.
$$\frac{3}{4}x + 17 = 23$$
-17 -17

(9) $\frac{3}{4}x = 6(\frac{4}{3})$

4.9
$$y(-4)(y+1) = 31$$

9 $y(-4)(y+1) = 31$
9 $y(-4)(y+1) = 31$
5 $y(-4)(y+1) = 31$

$$5 - 6(w - 4) + 8w = 2(w + 9)$$

6.
$$3m - (7m + 12) = 2(m - 3)$$

$$-4m-12=2m-6$$

 $-2m$ $-3m$

$$-6m-12=-6$$

$$-\frac{\sqrt{6m}}{-8} = \frac{6}{-6}$$

7.
$$2x - 2(4x - 3) = 6 - 6x$$

7.
$$2x - 2(4x - 3) = 6 - 6x$$

$$2x - 3x + 6 = 6 - 6x$$

8.
$$x-8 = \frac{3}{x}$$

$$7x = 3x - 24$$

- $2x - 3x$

9. Given $A = \frac{1}{2}bh$, solve for h

10. Given $K = \frac{mv^2}{2}$, solve for m

ABSOLUTE VALUE EXUATIONS

1.
$$|x| = 9$$

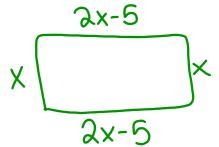
$$X=9 X=.9$$

 $X=9-9,9$

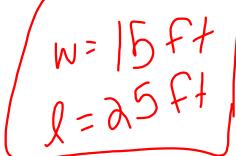
2.
$$|6c-3|=21$$

$$6c-3-21$$
 $+3+3$
 $6c=24$
 6

C=4


3.
$$|7m| + 4 = 25$$
 $-4 - 4$
 $|7m| = 21$
 $|7m| = 21$

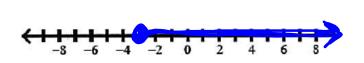
Unit 4: Word Problems

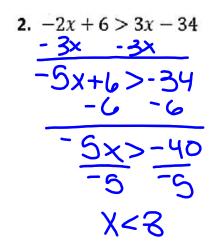

The length

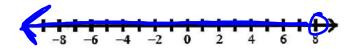
1. Max is making a rectangular garden, that is 5 feet less than twice its width. If the perimeter of the garden is 80 feet, what will be its dimensions?

let x= wiath let 2x-5= length

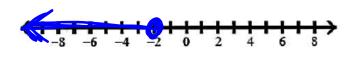
$$80 = 6x - 100$$
 $+10 + 100$
 $90 = 6x$
 $15 = x$


2. Amie published her first book. She was given \$20,000 and an additional \$0.15 for each copy of the book that sold. Her earnings, d, in dollars, from the publication of the book are given by d = 20,000 + 0.15n where n is the number of copies sold. During the first year, Amie earned \$22,100 from the publication and sale of her book. How many copies of her book were sold?

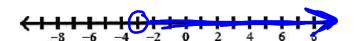

$$\frac{2.100}{0.15} = \frac{0.15}{0.15}$$

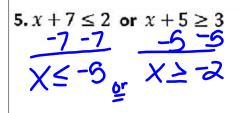

14,000 copies of her book Were Sold.

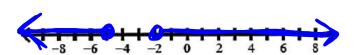
Unit 5: Inequalities


1.
$$11x + 13 \ge -20$$

 $-13 - 13$
 $11x \ge -33$
 11
 11
 11
 11
 11






3.
$$3x(-7(x+3) \ge -13)$$

 $3x-7x-21 \ge -13$
 $-4x-21 \ge -13$
 $-4x \ge 8$
 $-4x \ge 8$
 $-4x \ge 8$
 $-4x \ge 8$
 $-4x \ge 8$

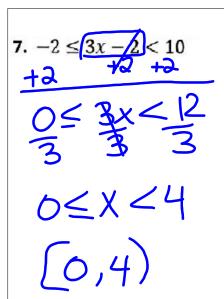
4.
$$4 - 8x < 2(5 - 3x)$$

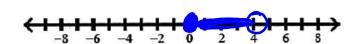
$$(-\infty, -5]$$
 or $[-2, \infty)$

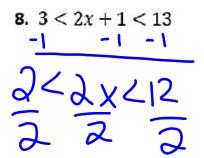
6.
$$3x+5<-16 \text{ or } -5x-8 \le -13$$

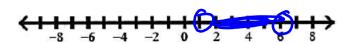
$$-5 -5 +8 +8$$

$$3x<-21 -5x<-5$$


$$-5 -5$$


$$X \le -1$$


$$X \le -1$$



$$(-\infty,-7)$$
or $[-1,\infty)$

12x26

Unit 6: Polynomials

Simplifying Polynomials

1.
$$(5+2x^3+x-3x^2)+(4x^3+11-6x+7x^2)$$
5+2x3+x(3x4+4x3+11-6x+7x^2)
6x3+4x^2-5x+16

2.
$$(2x^2 + 3x + 2) \rightarrow (x^2 - 4x - 1)$$

 $2x^2 + 3x + 2 \rightarrow (-1x^2 + 4x + 1)$
 $x^2 + 7x + 2$

3.
$$(3a^2b^3)(2a^2 - 7ab + b^2)$$

3.
$$(3a^2b^3)(2a^2 - 7ab + b^2)$$

 $(6a^4b^3 - 21a^3b^4 + 3a^2b^5)$

4.
$$(x + 4)(x + 9)$$

$$x^{2}+4x+9x+36$$

 $x^{2}+4x+9x+36$

5.
$$(2a + 5b)(a - 3b)$$

6.
$$(x + 8)(x - 8)$$

7.
$$(2y-1)^2$$

8.
$$\frac{18a^{3}b + 12a^{2}b^{2} - 6ab}{6ab}$$

$$8a^{3}b + 12a^{3}b^{3} - 6ab$$

$$6ab \quad 6ab \quad 6ab$$

$$3a^{2} + 2ab - 1$$

9.
$$\frac{-24x^4 + 48x^3 - 8x^2}{8x^3}$$

 $\frac{-24x^4 + 48x^3 - 8x^2}{8x^3}$
 $\frac{-34x^4 + 48x^3 - 8x^2}{8x^3}$
 $\frac{-3x^4 + 6 - 1}{x}$

Unit 7: Factoring

DIFFERNCE OF TWO PERFECT **SQUARES**

BASIC TRINOMIAL

BOX METHOD $\chi^{+} px + C$ $Q\chi^{+} px + C$

Polynomials that cannot be factored are called _

prime

$$\frac{2.x^2y + 8x}{X(XY + 8)}$$

3.
$$75a^2b^3c - 30ab^2$$

4.
$$4m^2 - 81n^2$$

$$15ab^{2}(5abc-2)$$
 $(2m+9n)(2m-9n)$

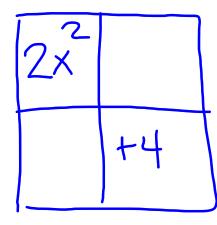
5.
$$12x^2 - 12$$

$$12(x^2-1)$$
 $12(x^2-1)$

6.
$$27b - 75b^3$$

$$3b(9-25b^2)$$

 $3b(3-5b)(3+5b)$


7.
$$p^2 - 13p + 30$$

$$(9-10)(9-3)$$
 $n(n^24n-60)$

8.
$$n^3 - 4n^2 - 60n$$

$$n(n^2 4n - 60)$$

12.
$$2x^2 - 5x + 4$$

Prime

No_ - tactors

Unit 8: Solving Quadratic Equations

To solve a quadratic equation, use one of the following methods:

- Factoring
- Quadratic Formula

1.
$$x^{2} + 8x = 0$$

2. $4x^{2} = 10x$

$$-10x - 10x$$

$$4x^{3} - 10x = 0$$

$$x = 0$$

$$x = -8$$

$$x = -8$$

$$x = -8$$

$$x = -8$$

$$x = -9$$

$$x$$

Completing the Square

Rewrite each expression by completing the square

$$(a^{2}-4a+15)$$

$$(a^{2}-4a+15)$$

$$(a^{2}-4a+15)$$

$$(a^{2}-4a+1)$$

$$(a^{2}-4a+4)+11$$

$$(a-2)+11$$

$$\frac{2c^{2}+20c-40}{(c^{2}+20c-40)} = \frac{40}{40} = \frac{40}$$

$$(x^{2} + x + 1)$$

$$(x^{2} + 1) \times + 1 \xrightarrow{-3/4}) + \frac{3}{4}$$

$$(x + 1/2)^{3} + \frac{3}{4}$$

$$(x + 1/2)^{3} + \frac{3}{4}$$

1.
$$a^{2}-4a\frac{1}{4} = 0$$
 $A = 4$
 $A =$

Q= 2+ sia

3.
$$r^{2} + 4r + 3 = 0$$

$$\frac{-3 - 3}{r^{2} + 4r + 4r} = -3 + 4$$

$$4(a)^{2} \rightarrow 4$$

$$(r + 2)^{2} = 1$$

$$(+2 = \pm 1)$$

$$(+2 = 1)$$

$$\frac{-2 - 2}{r = -1}$$

$$r = -3$$

$$r = -3$$

4.
$$c^{2} + 20c - 40 = 0$$
 $+ 40 + 40$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

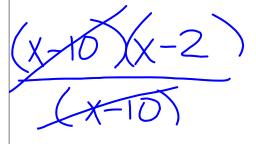
$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

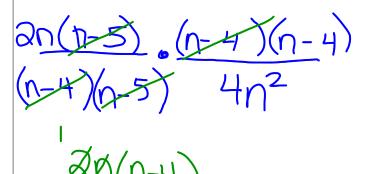
$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100 = 40 + 100$$


$$c^{2} + 20c + 100 = 40 + 100$$

$$c^{2} + 20c + 100$$


Unit 9: Rational Expressions and Equations

Simplify each expression or solve each equation for x.

1.
$$\frac{x^2 - 12x + 20}{x - 10}$$

$$2n^{2} - 10n \over n^{2} - 9n + 20 \cdot \frac{n^{2} - 8n + 16}{4n^{2}}$$

$$\frac{n-4}{an}$$

$$\frac{3y+9}{y+2} + (y+3)$$

$$\frac{3y+9}{y+2} - \frac{y+3}{y+3}$$

$$\frac{3y+9}{y+2} \cdot \frac{1}{y+3}$$

$$\frac{3(y+3)}{y+2} \cdot \frac{1}{y+3}$$

$$\frac{3}{y+2} \cdot \frac{4x}{x^2-12x+20}$$

$$\frac{2x^2}{x^2-12x+20} \cdot \frac{4x}{x^2-12x+20}$$

$$\frac{2x^2-4x}{x^2-12x+20}$$

$$\frac{2x}{x-10}$$

$$\frac{2x}{x-10}$$

Factor to find common denom.

$$\frac{x+24}{5(x+4)} = \frac{5x}{(x+4)}$$
 $\frac{x+34}{5(x+4)} + \frac{5x}{5(x+4)}$
 $\frac{x+24+5x}{5(x+4)} = \frac{6(x+4)}{5(x+4)} \rightarrow \frac{6}{5}$
 $\frac{x-7}{6} \times \frac{4}{x+3}$
 $(x-7)(x+3)=34$
 $x^2 - 7x + 3x - 21 = 24$
 $x^2 - 4x - 21 = 3x$
 $-24 \times -24 \times -2$

$$\frac{\sqrt{\frac{92}{x-3} - \frac{1}{4x-12}}}{4(x-3)} = \frac{2}{x-5}$$
Common denom.

Simplify
Cross mult.

$$\frac{9}{4x-3} - \frac{1}{4(x-3)} = \frac{2}{x-5}$$

$$\frac{7}{4(x-3)} = \frac{2}{x-5}$$

$$\frac{7}{4x-3} = \frac{2}{x-3}$$

$$\frac{7}{4x-3} = \frac{2}{x-3}$$